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4 Introduction

Cyclical changes in barometric pressure can draw gas upward out of the soil
into the atmosphere. In fractured permeable medium, the resulting transport
process may be of orders of magnitude more significant than molecular
diffusion [1]. Clandestine underground nuclear tests produces radionuclides
at depth of several hundered meters, which migrate to the surface induced by
this atmospheric pumping. A deep understanding of the transport mechanism

Comprehensive Test Ban Treaty Organisation (CTBTO).
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Nuclide Atomic Mass NN Abun % Spin Half Life DM DT Decay Energy (MeV)
PimXe 130.9042 (+ 0.164 MeV) 77 Syn 11/2- 11.84d IT 0.164
$Xe 132.9059 79 Syn 3/2+ 5.24d B Cs 0.427
1¥mXe (+ 0.233 Mev) 79 Syn 11/2- 2.19d IT 0.233
*Xe 134.91 81 Syn 3/2+ 9.14h B Cs 1.151

The atmospheric activity concentration of '**Xe is well below the detection limit. Therefor

only non-natural sources like nuclear power plants or nuclear weapons contribute to a
countable amount.
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Athmospheric Pumping

Weather  patterns  causes  cyclical 12.8F R RS e e ey e
variations in the barometric pressures 12.7} ’
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millibars over periods of a few days. These 2, 1%® s
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Enhanced Thermal Conduction Process

The ends of the channel terminate in large

Kurzweg [3] examined analytically the _ _ A
reservoirs which are maintained at constant

hydrodynamics of enhanced longitudinal

heat transfer through a sinusoidally but different temperatures. This probllem. IS
oscillating viscous fluid in an array of  analogous to the contaminant -diffusion
parallel-plate channels with conducting  Problem —under  oscillatory  conditions.
sidewalls. This process underlies the  Negdlecting end effects and assuming

laminar-flow conditions, the axial-velocity
profile existing in the central channel is
represented by the real part of:
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Double-Porosity Model. It has the effect
of increasing the conducting heat transfer
in the axial direction by a factor of 10* and
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Fiaure 1. Geometry of the parallel-channel flow configuration under investigation. n: non-dimensional coordinate normal to the flow direction (Y/ a)

The time-averaged axial temperature gradient has the constant value ~, one can try a locally
valid solution of the form:

T(xa 1, t) = ’Y[I + @9(77) eXp(th)]

An effective avaraged thermal diffusivity can then be defined by the equality:

W 2w 1 .
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Conceptual Model

A schematic diagramm is given
below [2],[4]. Fractures of halfwidth
o, are surrounded by a porous

matrix material having porosity and

permeability
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falling barometer, contaminated gas from fractures and matrix blocks
below the interface expands upward through the fractures. Only the
relatively small fracture volume above the interface serves as a buffer
volume.

Governing Equation

The pressure response of the
fractured porous medium s
controlled by the following pair of
coupled equations [5]:

op O*p  dmm Op
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9 Qaf 972 + 5,y Matrix

The parameters o and «_ are the

so-called pneumatic diffusivities,
which control the speed of pressure
waves along the fracture and within
the porous matrix. These are defin-
ed as follows:

(5]”)2@ o — kmpo
" udm

kp, : Matrix permeability

12 u
0; : Fracture width
¢m : Matrix porosity

4 alr viscosity

for laminar flow along a fracture of
width ¢ and Darcian flow within the

matrix blocks. These equations ap-
ply to isothermal flow of an ideal
gas in the absence of inertial and
turbulence effects.

Double-Porosity Model (DPM)

Sinusoidal Pressure Response of a
Fractured Porous Medium

“isualization of pressure variation at depth s induced by harmonicaly waring surface pressure, gualitative
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Using standard separation of variables tech-
niques the exact solution to the previously
mentioned pair of coupled equations is the
real part of:
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In which are dimensionless Fourier numbers

associated with

the matrix alone, the

fracture alone and the composite fractured
matrix, respectively.
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Filtering Regime and Quasi-

Steady Contaminant Transport

A typical numerical simulation of
the pumping effect is shown
below [2]:
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In the early time filtering regime,
the outflow of contaminant is
retarded. The underlying mech-
anism loses its effectiveness be-
yond the first few cycles of

pumping

Overall Transport Efficiency

Owerall Efficiency by Fracture Spacing
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* Development of a gas migration model based on the
Double-Porosity Model for *'™Xe, '**Xe, **"Xe, *°Xe

 Determine shift of ratio for *'™Xe, **Xe, **™Xe, **Xe
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On 22 Sept 1993 a simulated 1kt nuclear explosion was produced by the detonation of 1.3 mio kg of chemical explosives in a mined
cavity sited at a depth of 400 m in the bedded tuff of Rainier Mesa at the Nevada Test Site. Two gas tracers with different diffusivities
were released. The less diffusive tracer (SF6 , D =9.1 x 10° m*s,) was detected on a nearby geologic fault 50 days after detonation.

The more diffusive tracer (°*He, D = 7.6x10°m?/s) was detected 375 days after release. [1], [5]

 Estimate time of arrival for different geologic and
stratigrafic structure as given for the Nevada Test Site (Ne-
vada) and the Novaya Zemlya Test Site (Novaya Zemlya)
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